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ABSTRACT 

Let # be a probability measure on a locally compact second countable 

group G defining a recurrent (but not necessarily Harris) random walk. 

Denote by G c~ the space of paths and by B(a) the asymptotic  a-algebra. 

Let the start ing measure be equivalent to the Haar measure and write Q for 

the corresponding Markov measure on G ~ .  We prove that  

L~~ B (a), Q) is in a canonical way isomorphic to L~(G/N)  where 

N is the smallest closed normal subgroup of G such that  #(zN) ---- 1 for 

some z C G. The group G/N is either a finite cyclic group with generator 

zN or a compact abelian group having the cyclic group {znN}nEZ as a 

dense subgroup. As a corollary we obtain that  the set of all ~ E LI (G)  

such that  l imn~or [[~ * #n [] 1 = 0 coincides with the kernel of the canonical 

mapping of L I (G)  onto L 1(G/N) .  In particular, when # is aperiodic, i.e., 

G = N, then the random walk is mixing: l imn~c~ [[~ * #=[[1 -- 0 for every 

E LI (G)  with f~p = 0. 

1. I n t r o d u c t i o n  

We shall consider right random walks on a locally compact second countable 

group G. A r igh t  r a n d o m  walk  on G is a Markov chain with state space G and 

transition probability II(g, A) = #(g-lA) where p is a probability measure on G. 

The position of the random walk at t ime n is a product Xn = YoYI"" Yn where Y0 

is the initial position and Y1, Y2,.. �9 are independent G-valued random variables 

distributed according to the law p. Y0 is also a random variable, independent of 

Y1, Y2, �9 �9 �9 and distributed according to a law u. We shall denote by G ~176 = 1-In~__0 G 
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the space of paths and by Q~ the Markov measure on G ~162 determined by # and 

v. In the case that  v is a point measure /ix, we shall write Q ,  rather than 

Q ~ .  B (a) and B (~) will stand for the asymptotic  (tail) and invariant a-algebras, 

respectively. The random walk will be called a d a p t e d  when there is no proper 

closed subgroup H C_ G wi th /~(H)  = 1, i r r e d u c i b l e  when there is no proper 

closed semigroup S c_ G with #(S) = 1, and a p e r i o d i c  when it is adapted and 

there is no proper closed normal subgroup N C_ G and no z E G such that  

# ( z N )  = 1. 

For any Borel subset A C_C_ G let 

r(A)  = ((w~}n~__l E G~176 wn E A for infinitely many n ' s} .  

The set A is called r e c u r r e n t  if Q~:(r(A)) = 1 for all x E G and t r a n s i e n t  

if Q~(r(A))  = 0 for all x E G. The random walk is called r e c u r r e n t  if every 

nonempty open set is recurrent and t r a n s i e n t  if every compact set is transient. 

An adapted random walk is either transient or recurrent [19, Chapter  3.3]. Every 

recurrent random walk is irreducible. 

A random walk is called r e c u r r e n t  in t h e  s e n s e  o f  H a r r i s  (or a H a r r i s  r a n -  

d o m  walk)  if every Borel set of nonzero Haar measure is recurrent. Recurrence 

in the sense of Harris implies recurrence but not every recurrent random walk is 

Harris. Call a random walk of law # s p r e a d  o u t  if there exists n -- 1, 2 , . . .  such 

that  the convolution power #~ is nonsingular with respect to the Haar measure. 

A random walk is recurrent in the sense of Harris if and only if it is recurrent 

and spread out [19, Theorem 3.9, p. 102]. 

The theory of Harris random walks is a special case of the well known theory 

of Markov chains recurrent in the sense of Harris [19]. The invariant a-algebra 

of a Harris random walk is trivial in the following sense [19, Proposition 2.10, p. 

94]. 

THEOREM 1.1: I f  the random walk is Harris, then for every A E B (~) either 

Qx(A)  = 0 for all x E G or Qx(A)  = 1 for all x E G. 

The asymptot ic  a-algebra of a Harris random walk has a simple description 

in terms of a cyclic behavior of the random walk [19, Chapter  6.2]. Let N be 

the smallest closed normal subgroup of G such that  ~ ( z N )  = 1 for some z E G. 

It  turns out that  N is an open subgroup and G I N  a finite cyclic group with 

generator zN .  At each step the random walk proceeds from a coset z'~N to 
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z'~+IN and returns to every coset periodically with period d, where d is the 

order of G/N.  The asymptotic a-algebra B (a) is completely described in terms 

of sets A~ E B (a), ~ E G/N,  where 

02 c ~  (1.1) A~ - - {{  ,~}n=0EG~;  for somek,  w n E ~ ( z N )  n for a l l n > k } .  

Clearly, the A~'s are pairwise disjoint and Q~(A~) is 1 for x E ~ and 0 otherwise. 

THEOREM 1.2: If  the random walk is Harris, then for every x E G and every 

A E B (~), Q~(A) is either 0 or 1. Moreover, for every A E B (~) there exists a 

subset I C G / N  such that Q~(AA U~el A~) = 0 for all x E G where A denotes 

the symmetric difference. 

Theorems 1.1 and 1.2 fail for random walks that  are recurrent but  not Harris 

(i.e., not spread out). In fact, Theorem 1.1 is false for any random walk (recurrent 

or not) which is not spread out [19, Exercise 3.19, p. 105]. Furthermore, one can 

produce simple examples of recurrent random walks which admit invariant sets A 

such that 0 < Q~(A) < 1 for some x E G (see Example 4.1 below). In particular, 

both statements of Theorem 1.2 can be violated (note that  the 2nd statement 

implies the lst). 

Bounded continuous harmonic functions of a recurrent random walk can be 

easily seen to be constant. One can use this to obtain the following substitute 

for Theorem 1.1 (see also [19, Exercises 4.13, p. 145 and 3.13, p. 59]). 

THEOREM 1.3: If  the random walk is recurrent, then for every A E B (0 either 

Q~(A) = 1 for A-a.e. x E G or Q~(A) = 0 for A-a.e. x E G, where A is a Haar 

measure of G. 

When G / N  is countable, N is necessarily open (by the Baire category 

theorem). Therefore, when the random walk is recurrent then G / N  cannot be 

infinite countable. However, it can be uncountable, e.g., when G is the circle 

group and # = 5g with g = exp(27rir) and r irrational, or when G = R and 

# has zero first order moment and is carried on two points generating a dense 

subgroup. 

For every ~ E G/N define a set A~ E B (~) by 

(1.2) A ~ : { { w n }  = E G = ;  l i m w n z - ' ~ N : ~ }  ~ 0  
n---~ OO 

Note that  when G / N  is finite, G/N is discrete and then Formula (1.2) is equiv- 

alent to (1.1). We will prove the following substitute for Theorem 1.2. 
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THEOREM 1.4:  If  the random walk is recurrent, then for every A E B (a), Q~ (A) E 

{0, 1} for A-a.e. x E G. The group G/N is either a finite cyclic group or an 

uncountable compact abelian group having the cyclic group {z~N}nez as a dense 

subgroup. For every A E B (a) there exists a Bore1 subset I C G / N  such that 

Ur Ar E B (~) and Qx(AA Ur Ar = 0 for A-a.e. x E G. 

It is well known that the structure of the asymptotic a-algebra is related to 

the asymptotic behavior of the convolution powers #n [3, 13]. Throughout the 

sequel we shall identify LI(G) with the space of complex measures absolutely 

continuous with respect to A. Then I]" I]l = ]I" ]1 = total variation norm. We shall 

denote by L~(G) C_ LI(G) the subspace of all ~ E LI(G) with ~(G) = 0. Recall 

that  the random walk is called e rgodic  if 

lira ~ ,  = 0 

for all ~ E LI(G), and mix ing  if 

lim I1~* ~11 = o 
n - - c O 0  

for all qo E LI(G). Ergodicity (resp., mixing) is equivalent to the condition 

that  the space L ~176 ( G ~176 13(0, Q ~ ) (resp., L ~176 ( G~176 , 13 (a ) , Q ~ ) ) consists of constants 

only (see, e.g., [3, Th~or~me 6]). It is well known that  every recurrent random 

walk is ergodic (an immediate consequence of Theorem 1.3). The fact that  an 

aperiodic recurrent random walk is mixing (well known in the Harris case [19, 

Proposition 2.4, p. 196]) was recently proven by Lin and Wit tmann in their study 

of convergence of averages of representations of G [14, Corollary 2.3]. Mixing 

follows immediately from our Theorem 1.4 and is a special case of the following 

more general result which we obtain along with Theorem 1.4. With 7r denoting 

the canonical homomorphism 7r: G ~ G / N  we define a subspace LI(G, N) C_ 
LI(G) by 

Llo(G,N) = {~ E LI(G); q0(Tr-l(A)) = 0 for every Borel subset A C_C_ G / N } .  

Thus L~(G, N) is the kernel of the canonical mapping of LI(G) onto LI(G/N)  

and for i = G, L~(G, G) = L~(G). 
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THEOREM 1.5: If  the random walk is recurrent, then for every ~ �9 LI(G) 

limoo I1~ * ~11 = 0 if and only if ~ �9 L~(G, N). 

As shown in Section 4, the description of the asymptotic  a-algebra given in 

Theorem 1.4, as well as Theorem 1.5, remain valid not only for recurrent random 

walks but, more generally, for random walks obeying the following weak 0-1 law: 

for every A �9 B (~), Q,(A) �9 {0, 1} for A-a.e. x �9 G. This includes arbi trary 

random walks on abelian G. In the abelian case the set 

{~ �9 LI(G);  l i m  II~ * #~]l = 0} = L~(G, N) 

can be also charactersized in terms of the dual group and the Fourier transforms 

of p and ~ [7, 8]. 

2. R a n d o m  wa lks  a n d  h a r m o n i c  f u n c t i o n s  

Let G be a locally compact second countable (lcsc) group. We shall denote by G ~ 

the product space G ~ ~ G G ~ .., -- l~n=o , by Xn: --* G, n -- 0, 1,. the canonical 

projections, and by B ~ the product a -a lgebra /3  ~ = I-In~=0 B -- a ( x 0 ,  x 1 , . . . ) ,  

where B is the a-algebra of Borel subsets of G. ~ will stand for a Haar  measure. 

Let # be a probability measure on G and write Q9 for the Markov measure 

of the random walk (of law #) started from a point g E G. Given A E B ~176 

the function G ~ g --~ Qg(A) is Borel. When v is a measure on G, the Markov 

measure Q~ of the random walk whose starting measure is v can be expressed as 

(2.1) Q~(A) = / G  v(dg)Q~(A), A E 13 ~.  

It  is clear that  the measure class of Q~ is completely determined by the measure 

class of v, i.e., if v ~ v'  then Q~ ~ Q~,. 

The transition probability II(g, A) = # ( g - l A )  is invariant with respect to the 

action of G on G given by multiplication on the left, i.e., P(gg ' ,  gA) = P(g ' ,  A) for 

all g, g' �9 G and A �9 B. There is also a natural  action of G on the space of paths 

G ~ ,  namely, g{Wn}n~=l = {gw,~}~_0. (G ~176 B ~ )  is a Borel G-space. The Markov 

measures Q9 satisfy Q~g,(gA) = Qg,(A), g, g' �9 G, A �9 13 ~.  Hence, when v is 

equivalent to the Haar measure A then Q~ is a quasiinvariant measure on the 
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G-space (G ~176 B~).  We have a natural G-action on L~(G ~176 B r162 Q~,) given by 

(g])(w) = f (g- lw)(modQx),  g E G, f E L~176176176 The formula 

(2.2) (Rf)(g) = / c ~  Qg(dw)f(w) (modA) 

defines an equivariant contraction R: L ~176 ( GCr , B ~176 , Q ~, ) ---+ L ~176 ( G ). 
o o  Let 0: G ~ --+ G ~176 denote the shift #{w~}~= 0 = {W~+l},~=0. O transforms the 

Markov measure Qv into the Markov measure Q~,~. I.e., 

(2.3) (OQ,,)(A) = Q~(z~-I(A)) = Q,,,u(A), A E B ~.  

When v ~ X then ~Q~ ~ Q~ and, hence, the formula Of = f o ~ (modQx), 

f E L~(G ~176 B~,Q~),  defines an injective homomorphism 8 of the ,-algebra 

L~ ~,  B ~,  Q~) into itself. It is clear that 9 and the G-action commute. We 

also note that 

(2.4) RO = PR 

where P: L~C(G) ~ L~176 is the contraction induced by H (i.e., by #), 

(2.5) (Pf)(g) = / o  H(g, dg')f(g') (modX). 

The a s y m p t o t i c  a -a lgeb ra  B (a), 

o o  

(2.6) B(~ = N 
k=0 

is invariant under the G-action. Consequently, L~(G ~,  B ('~), Qx) is a G-invariant 

subalgebra of L~(G ~,  B ~176 Q:~). We shall use the notation L~(#)  instead of the 

cumbersome L ~ ( G ~,  B (a) , Q x ). 

The map B (a) 3 A -+ O-I(A) E B (a) is an automorphism of B (~). Hence, 

the homomorphism O restricted to L~(/~) is an automorphism. In the sequel 

we shall consider L~(#)  as a (G x Z)-space with the (G x Z)-action given by 

(g ,k) f  = gOkf, g e G, k E Z, f E L~(#).  
Let 7-/~ denote the space of all sequences h = {hn},~__0 where h ,  E L~(G),  

sup,  Ith, II < oo, and hn = Phn+l for all n = 0, 1, . . . .  7"/~ equipped with the 

norm IihiI = supn IihnlI is a Banach space. It is also a G-space with the G-action 
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OO ~ h OO gh = g{h,~}n= o {g n}n=0. Elements of Hoo will be referred to as space - t ime  

h a r m o n i c  func t ions .  
h oo Let f E L~(#)  and hn = RO-'~f. From (2.4) we have that { n}n=0 is a space- 

time harmonic function. The following basic result is a well known consequence 

of the martingale convergence theorem [17]. 

THEOREM 2.1: The map T~: L~(#)  --* 7-I ~176 defined by Ttf  = {RO-nf}~=o is 

an equivariant isometric isomorphism of L~(#)  onto ~oo. Moreover, for every 

h = {hn}n~176 6 7_/o0 the sequence {h,~ o X,~}~176 converges Q~-a.e. to 7~-1h. 

The a-algebra B (i) = {A 6 B~176 0-I (A)  = A} is called the invar i an t  a- 

a lgebra.  We shall write L~~ for L~176 ~176 B (i), Q~). L~(p)  is the fixed point 

algebra of the homomorphism O: L~176 ~176 13 ~176 Qx) -+ L~176176176 B ~176 Qx) and is 

G-invariant since 0 and the G-action commute. 

As follows from (2.4), when f 6 L~~ then P R f  = Rf .  Fixed points of the 

contraction P will be called h a r m o n i c  func t ions  and 7-/C_ L~176 will denote 

the space of harmonic functions. 

THEOREM 2.2: R (restricted to L~  (#)) is an equivariant isometric isomorphism 

of L~~ onto 7t. Moreover, for every h 6 7-/the sequence { hoX~} ~=o converges 

Q~-a.e. to R- lh .  

This theorem, similarly as Theorem 2.1, is a consequence of the martingale 

convergence theorem [17]. We remark that  the space-time harmonic functions 

are often introduced as the harmonic functions of the space-time process, i.e., 

the random walk of law # • 61 on G x Z [19]. The space L~(#)  is canonically 

isomorphic to L~~ x 61). 

We end this section by quoting an important result of Derriennic [3, Th4orbme 

1]. When ~ is a complex measure, we denote by [l~]l the total variation norm. 

When ~ is a complex measure on a a-algebra containing B(a) (resp., B(0), we 

write [lu[la (resp., [[ulli ) for the total variation norm of the restriction of ~ to B(~) 

(resp., B(0). 

THEOREM 2.3: When ~ is a complex measure on G then 

lira I[~ * •"11 --  IlO~llo,  lim ~ * = IIQ~lli. 
n - * c ~  n - -*oo  i = l  
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3. B o u n d a r i e s  

By a G-space (X, ,4 ;a)  we mean a Borel G-space (X,.A) with a quasi- 

invariant measure a. When (X, A ,a )  and (X', A', a') are two such G-spaces 

we say that L ~ ( A ' , A , a )  is G-isomorphic to L~165 a t) if there exists an 

equivariant isomorphism of the .-algebra L ~ ( X , A, a) onto L ~ ( X ', A ~, a ~). We 

define the p - b o u n d a r y  of a random walk of law p as any G-space (A', .A, a) 

such that  L ~ 1 7 6  is G-isomorphic to L~(p) .  We define the space - t ime  

p - b o u n d a r y  as any (G x Z)-space (X, ~4, a) such that L ~ ( X ,  .A, a) is (G x Z)- 

isomorphic to L~(p) .  We remark that since QA is equivalent to a finite measure, 

the same is true for the quasiinvariant measure a on any boundary or space-time 

boundary. 

A G-space (X, ,4, a) is a p-boundary if and only if there exists an equivariant 

identity preserving isometry U of L ~ ( X ,  .A, c~) onto the space 7/ of harmonic 

functions. A (G x Z)-space (X,.A, a) is a space-time p-boundary if and only if 

there exists an identity preserving contraction V: L ~ ( X ,  .A, c~) ~ L~(G)  such 

that the map Lee(X, .A, a) ~ f --* {V(e, - n ) f } ~ =  0 is an isometry onto the space 

7-/~ of space-time harmonic functions (e is the identity of G) and V(g, O)f = g V f  

for g C G and f E L ~ ( X ,  .A, a). (The "if" part of this characterization relies 

on the fact that  an identity preserving surjective isometry between two abelian 

C*-algebras is a *-isomorphism [2, Corollaire on p. 7].) 

Clearly, (G ~ ,  B (i), QA) is a boundary. (G ~ B (a), QA) is not exactly a space- 

time boundary because the shift 0 is not invertible on G ~.  In any case the 

spaces (G ~ ,  B (i), Qx) and (G ~176 B (a), QA) are awkward to work with, one reason 

being that the a-algebras B (i) and B (~) do not separate points. However, the 

fact that  G is lcsc allows a routine application of the classical Mackey theorem 

about pointwise realizations of group actions [15]. This shows that  there always 

exist boundaries (X, ~4, a) (resp., space-time boundaries) that  are s t a n d a r d ,  i.e., 

standard in their Bore1 structure and such that  the map G x X ~ (g, x) ~ gx 

(resp., (G x Z) x X ~ ((g, k), x) ---* (g, k)x) is Borel. Furthermore, a theorem of 

Varadarajan [21, Theorem 3.2] shows that one can even assume A' to be compact 

metric and the map G x X ~ (g, x) --* gx (resp., (G x Z) x X ~ ((g, k), x) 

(g, k)x) to be continuous. Below, by a continuous boundary (resp., space-time 

boundary) we mean a boundary (resp., space-time boundary) (X,.A, a) such 

that  X is a lcsc (Hausdorff) space and the G-action (resp., (G • Z)-action) is 

continuous as above. 
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W h e n  a is a a-finite measure on a Borel space (2d,,4) we shall identify 

L I ( X ,  A, a )  with the space of complex measures absolutely continuous with re- 

spect to a.  Then  II" ]]1 = II. ]I = the total  variat ion norm. W h e n  (X,`4)  and 

(X', A') are Borel spaces, F :  X --+ X ~, a Borel map  and v a measure on A, we 

shall write F v  for the measure (Fv)(A) = v (F- I (A) ) ,  A E .4'. In particular,  

when (X, .4)  is a Borel G-space, gv is the measure (gv)(A) = v(g- lA) .  

Given a space-time v -boundary  (X',.4, a )  we shall denote by ~ the auto- 

morphism Ox = ( e , - 1 ) x .  We shall write gO-kx ra ther  than  (g,k)x, g E G, 

k E Z, x E X. W h e n  V is a measure on G and p a measure on X, the convolut ion 

P * P is defined by 

(V* p)(A) = It. p(dg)P(g-lA)'  A E .4. 

When  A" is a lcsc space, by the weak.  topology on the space A/[ of complex 

measures on X we mean the a(A,I, C0(X))- topology,  where Co(X) is the space of 

continuous functions vanishing at infinity. 

The following proposi t ion establishes basic properties of the continuous space- 

t ime v-boundary .  The proof  is technical and we relegate it to  the Appendix.  

PROPOSITION 3.1: Let lz be a probability measure  on G and  ( X , A , ~ )  a 

continuous space-time v-boundary. Let r denote an equivariant isomorphism 

of L ~ ( X ,  `4, a) onto L~(V).  It follows tha t  there exists a probability measure  p 

on X such tha t  

( a )  v * p = 

(b) A * O n p ~ a  f o r a l l n E Z ,  

(c) (RO-nr = fx (O-np)(dx) f (gx)  (modA) for all f E n ~ ( x , . 4 ,  a) and 

n=O,  1, .... 

(d) lim~-+o~ []~ * v~ll = II~ * pll for every ~ E LI(G). 
Moreover, if • = (w = {w,~}~=o E G~; the sequence w ~ - n p  converges 

weakly, to a point measure}, then fl E B (a) and Q~(G ~176 - fl) = O. There 

exists a Borel map F: G ~ --+ X such tha t  FQ~ ,,~ a, r  = f o F for every 

f E L ~ ( X ,  .4, a), and 6F(~) = limn-+o~ w,~-~p  for every w E ~.  Furthermore, 

iff~l E B (a) and Q~(G ~ - ~1) = 0 then for a-a.e,  x E X there is w E fl l  with 

w ~ - n  p --+ 6= weakly.. 

The Propos i t ion  has an obvious analog for the continuous #-boundary.  

(Formally, one puts  ~ = id and replaces I[~ * P~[[ by [[(1/n)~i~ 1 ~ ,  viii in 

s ta tement  (d).) 
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Our definitions of the continuous #-boundary and space-time #-boundary, as 

well as Proposition 3.1, are directly motivated by the work of Furstenberg [9, 

10] to whom the concept of a continuous #-boundary is due. Our continuous 

#-boundary corresponds to Furstenberg's 'universal/~-boundary' [10] or 'Poisson 

boundary' [9], although his definition differs from ours and contains some of the 

statements of the analog of Proposition 3.1 as defining properties. The continuous 

space-time/~-boundary will be indispensable for our proof of Theorems 1.4 and 

1.5. 

4. W e a k  0-1 law a n d  t h e  b o u n d a r i e s  

We shall say that a random walk on G obeys the 0-1 law if for every x E G and 

every A E B (a), Q=(A) is either 0 or 1. By Theorem 1.2 a Harris random walk 

obeys the 0-1 law. When G is abelian, every random walk obeys the 0-1 law as 

a consequence of the Hewitt-Savage 0-1 law [12], [16, Chapter VIII.I]. However, 

not every recurrent random walk obeys the 0-1 law: 

Example 4.1: Consider any nonabelian compact connected Lie group G (e.g, 

SO(3, R)). It is well known that considered as a discrete group, G is not amenable 

and contains a free group on two generators as a subgroup [18, Theorem 3.9, p. 

107 and B51, p. 324]. Let D be a countable dense subgroup of G containing a free 

group and let # be a probability measure carried on D and such that  the support 

of # generates D. Then # is adapted and as G is compact/~ defines a recurrent 

random walk on G. Suppose that the 0-1 law holds. Then from (2.1) and (2.3) 

with u = 6e we obtain Q=(A) = Qe(A) for all A E B (0 and all x E supp#. As 

supp/~ generates D, Q=(A) = Q~(A) for all A E B (i) and x E D. Using Theorem 

2.3 we then have 

lim #i __1 = 6 = - 6 e ) .  = 0  
n--*oo n i = 1  i = 1  

for all x E D. As # is carried on D, this would imply that D is amenable [11, 

Theorem 2.4.3], a contradiction since D contains a free group. 

We shall say that  a random walk obeys the weak  0--1 law if for every A E B (a) 

Q=(A) E {0,1} for ~-a.e. x E G. We remark that  for a spread out random walk 

the 0-1 law and the weak 0-1 law are equivalent. This follows from the fact 

that  bounded space-time harmonic functions of a spread out random walk are 

continuous (apply [19, Proposition 1.6, p. 162] to (# • 6a)-harmonic functions). 
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PROPOSITION 4.2: Let (X, ,4, a) be a continuous space-time t~-boundary. The 

random walk obeys the weak 0-1 law if and only if the measure p of Proposition 

3.1 is a point measure. 

Proo~ We leave it to the reader to check that  the weak 0-1 law is equivalent 

to the condition that  the contraction R of Equation (2.2) be multiplicative on 

L~(p). Hence, with the notation of Proposition 3.1, the weak 0-1 law is equiv- 

alent to the condition that  R~ be multiplicative. But (R@f)(g) = f p(dx)f(gx) 

(mod)~) for all f E L~ Clearly, if p is a point measure, then R e  is 

multiplicative. To establish the converse, note that  for f E Co(X) the function 

G ~ g --~ ~ p(dx)f(gx) is continuous. Hence, if R~ is multiplicative, then the 

functional Co(X) ~ f ~ f p(dx)f(x) is multiplicative. Thus p must be a point 

measure. I 

Given a probability measure # on G we shall denote by H the smallest closed 

subgroup with #(H)  -- 1 and by N the smallest closed normal subgroup of H 

such that  #(zN) = 1 for some z E H. 

PROPOSITION 4.3: 

(a) If  H / N  is countable, it is discrete, cyclic and generated by zN. 

(b) If H/N is not countable, it is compact abelian and the cyclic group gener- 

ated by zN is dense in H/N. 

(c) If H coincides with the smallest closed semigroup S such that #(S) = 1, 

then H/N is compact. 

Proof." The Proposition (which is not difficult to prove) is essentially a reformu- 

lation of Proposition 1.6 in [6]. I 

Note that  G/N admits a homeomorphism 0: G/N --* G/N such that  O(gN) --- 

gzN for every g E G. 0 commutes with the usual G-action on G/N and preserves 

the (unique) G-invariant measure class of G/N. By the (G • Z)-action on GIN 

we shall mean the action (g, k)x = gO-kx. Note that when G = H then 0 is 

simply the translation O(gN) = (gN)(zN) on the abelian group G/N; 0 acts 

either transitively (case (a) of Proposition 4.3) or properly ergodically (case (b)). 

For every n - 0, 1 . . . .  define a map ~,~: L~(G/N)  --* LC~(G) by ( ~ f ) ( x )  = 

f (xz -~N)  = ](O-~(zg)) (modA). It is clear that  given f e L~(G/N),  the 

sequence { nf}n=O is a space-time harmonic function. Therefore one can define 
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0): LO0(G/N) ~ L~(p )  by 

(4.1) C f  = 7~-1~@ r176176 ( n d J n = 0  

where 7~ is the isomorphism of Theorem 2.1. It easily follows that (I) is a (G • Z)- 

equivariant isometry of LO0(G/N) into L~(p) .  
h o0 7-/~176 We shall say that g E G is a period of 7-/o0 if for every h = { n}n=0 E we 

have hn(xg) = h~(x) (modA) for every n = 0, 1, . . . .  Of course, the periods form 

a subgroup of G. 

THEOREM 4.4: The following conditions are equivalent for a random walk of law 

p: 

(a) the random walk obeys the weak 0-1 law; 

(b) N is contained in the group of periods oleo0; 

(c) the mapping �9 of Equation (4.1) is an equivariant isomorphism of 

LO0(G/N) onto L~(p);  

(d) G / N  is a space-time p-boundary and the probability measure p of Propo- 

sition 3.1 can be chosen as p = 6N; 

(e) lirn~_.o0 l[~ * pn[[ = 0 for every r E L~(G, N). 

Proof'. (a)=v(b): Let (X, A, a) be some continuous space-time p-boundary and 

p the probability measure of Proposition 3.1. Then p is a point measure 5v and 

by Proposition 3.1(a) gp = Op for every g E suppp (here 0 is as in Proposition 

3.1). Since 0 commutes with the G action, we conclude that gP = P for all 
- - n  n g E U~=I(S~S~ -n U $1 S 1 ) where $1 = suppp. But N is the smallest closed 

subgroup containing tto0 IS,~S-nU SI'~S,~) [6, Proposition 1.1]. Therefore gP % ) n = l k  1 1 ~" 

p for g E N. Using now point (c) of Proposition 3.1 we obtain that if h = {h~}no0__ o 

is a space-time harmonic function, then, given g E N, h,~(xg) = hn(x) (mod A) 

for every n. 
h o0 7-/o0 (b)=~(c): It suffices to show that for every h = { n}~=o E there exists 

f E LO0(G/N) such that hn(x) = f ( x z - n N )  (mod A) for all n = 0, 1, . . . .  But this 

follows immediately from property (b) and the definition of space-time harmonic 

functions. 

(c)=~(d): Obvious. 

(d)=~(a): Obvious by Proposition 4.2. 

(d)=~(e): Obvious by Proposition 3.1(d). 

(e)=~(b): Let v,~ << A be a sequence of probability measures converging weakly, 

to ~fe. Let g E N. Then for every n, un*~9-v~ E L~(G, N). Hence, if (X, .A, a ) i s  
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some continuous space-time g-boundary and p the probabili ty measure of Propo- 

sition 3.1, then (~,~ �9 5g) * p - v~ * p = v~ * gp - v~ * p = 0 by Proposition 3.1(d). 

Passing to the limit n --~ oc we obtain gp = p. Proposition 3.1(c) then implies 

(b). I 

COROLLARY 4.5: I f  the random walk obeys the weak 0-1 law, then 

Proof: Let S~ 

oo 

N = U (supp p)n(supp p ) -n .  
n----1 

= supp p~ = (supp p)~. It  is clear that  

n = l  n----1 

Suppose that  g E N - U~~ 1 s ~ s j  1. Then there is a neighbourhood U of e in 

G such that  Ug N Un~ s ~ s ~  1 = 0. If v is a neighbourhood of e such that  

V - 1 V  C_ U, then VgSn A VSn = 0 for all n = 1, 2 , . . . .  Let v be an absolutely 

continuous probability measure carried on V. Then (v �9 5g) �9 pn is carried on 

VgSn while v * p~ is carried on VS~. Hence, I[(v * 5~) �9 p~ - v *pn[[ = 2. But 

v ,  5g - v C L ~  (G, N)  and we obtain a contradiction with Theorem 4.4(e). I 

COROLLARY 4.6: I f  the random walk obeys the weak 0-1 law, then for every 

e LI(G),  limn--,o~ [[~* pn H = 0 if  and o n l y i f ~  E L~(G,N) .  

Proo~ Combine Theorems 3.1(d) and 4.4(d), (e). I 

Let, for every ~ E G/N,  A~ denote the set 

} A~ n}~=o C G ~ ;  lira w n z - " N  = ( . 

Since G / N  is 2nd countable, it follows that  A~ E ~(a). 

COROLLARY 4.7: I f  the random walk obeys the weak 0-1 law, then for every 

A E B (a) there exists a Bore /subse t  I C_ G / N  such that  Ueel  A~ E B (a) and 

Q~(AA U~eI A~) = 0. 

Proof." Apply the Borel map F: G ~ ~ G / N  of Proposition 3.1. I 
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Remarks: (1) It can be shown that  the weak 0-1 law is equivalent to the con- 

dition that  the random walk on G • Z of law # x t51 satisfy the Choquet-Deny 

theorem: bounded continuous harmonic functions are constant on the left cosets 

of the smallest closed subgroup H C_ G • Z with (# • 51)(/~) = 1. In [5] Derriennic 

and Lin showed that under the latter condition G/N is a space-time p-boundary. 

(2) Since for a mixing random walk L~(p)  = Clt, Theorem 4.4 and Corol- 

lary 4.5 contain a recent result of Lin and Wit tmann [14, Corollary 2.7(i)]: the 

condition G = Un~__l(SUpp p)'~(supp p)-n  is necessary for mixing. 

(3) Using one of Derriennic's 0-2 laws [3] one can show that the 0-1 law is 

equivalent to the following r e s t r i c t ed  0-1 law: for every x E G and every 

A E B (i), Qx(A) is either 0 or 1 [4, Appendice 2]. Motivated by this result one 

may conjecture that the weak 0-1 law is equivalent to the weak  r e s t r i c t ed  O-1 

law: for every A E B (i), Qx(A) E {0, 1} for A-a.e. x E G. The weak restricted 0-1 

law is equivalent to the Choquet-Deny theorem. Using the p-boundary analog 

of Proposition 3.1 one can in an obvious way modify the proofs of Proposition 

4.2, Theorem 4.4, and Corollaries 4.5-4.7 to obtain the corresponding results for 

the weak restricted 0-1 law. In particular, the result of Lin and Wit tman [14, 
oo n co  n - - I  Corollary 2.7(ii)] follows: the condition G = (Un=1 (supp #) ) (Un=1 (supp #) ) 

is necessary for ergodicity of the random walk. 

5. R e c u r r e n t  r a n d o m  walks 

Using the #-boundary analogs of Propositions 3.1 and 4.2 it is almost trivial to 

show that  a recurrent random walk obeys the weak restricted 0-1 law. We will 

show that  it also obeys the weak 0-1 law. 

THEOREM 5.1: Every recurrent random walk on a ]csc group obeys the weak 

0-1 law. 

Proof: Let (X, A, a) be a continuous space-time #-boundary. Note that  since 

a is quasiinvariant, supp a is a closed G-invariant set. Hence, replacing X by 

supp a we can assume that  c~(U) r 0 for every nonempty open subset of X. 

We shall use the notation of Proposition 3.1. We claim that there exists an 

a-conull Borel set X0 C_ X such that for every x E Xo there is a sequence {nk}Cff=o 

of positive integers such that  ~-nh p converges weakly* to/ix. 
oo Let {Uk}k=o be a decreasing neighbourhood base at e E G and let f~l = 

r r Nk=0 (Uk). Since the random walk is recurrent, QA(G er - ~1) = O. Using the 
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last statement of Proposition 3.1 there exists a conull Borel set X0 C_ X such that  

for every x E 2/0 there is w = {w~},~~176 0 E fll with w,~0-np --* ~ weakly.. Since 
LO o o  w E fll,  there is a subsequence { n~}k=0 with w,~ E Uk, i.e., limk--.oo wn~ = e. 

Using the fact that  for every f E Co(X) the map G ~ g --* g f  is continuous with 

respect to the sup norm, we conclude that O-n~p ~ 5x weakly.. Thus X0 has 

the desired property. 

We now claim that N is contained in the stabilizer of every point x E X0. 

Indeed, if ~-,~kp ~ 6~ then 0 0 - ' ~ p  ~ ~ because 0 is a homeomorphism. On 

the other hand, we have t g 0 - ~ p  = 0 - ' ~ 0 p  = # * tg-n~p by Proposition 3.1(a) 

and the fact that  ~ and the G-action commute. So 6 ~  = # * 6x. Hence, gx = (~x 

for all g E supp # -- $1. Since ~ commutes with the G-action we conclude that 
n - - n  - - n  n gx = x for every g E Un=I(S1S 1 O S 1 S 1 ). As N is the closed subgroup 

generated by U~=I(S'~S1 ~ u S ~ S ' ~ )  [6, Proposition 1.1] we obtain the desired 

result. 

Note that  X'  = {x �9 X; g x  = {x))  is a closed subset of X. As a(U) # 0 for 

every nonempty open set and a ( X  - X ~) = O, we conclude that X = X ~. Hence, 

it follows from Proposition 3.1(c) that  N is contained in the group of periods of 

?_/0% If so, the proof is complete by Theorem 4.4(b). I 

We recall that  every recurrent random walk is irreducible. Hence, Theorem 

1.4 follows from Theorem 5.1, Proposition 4.3, and Corollary 4.7. Theorem 1.5 

follows from Corollary 4.6 and Theorem 5.1. 
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Appendix: A proof of Proposition 3.1 

LEMMA A.I :  Let G be a lcsc group and f an element of L~ such that 

limg--.e [[gf - f[[ = O. Then f is left uniformly continuous (i.e., it is an equivalence 

class of a left uniformly continuous function). 

Proo~ Let {V~}~=0 be a decreasing neighbourhood base at e and let en E LI(G) 

be a probability measure carried on V~. Define 

fn(x)  : (Er, * f ) (x )  = f ~n(d,q)f(g-lx). 
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Then f~ is a bounded left uniformly continuous function. Our assumption implies 

that  for a given e > 0 there exists N _> 1 such that  [[gf - f[[ _< ~/2 whenever 

n _> N and g E V~. Hence, for n _> N and ct E LI(G), we have 

](a, fn - f)[ = f a(dx) J e (dg)(f(g-ix) - f(x) ) 

g ] I,H(dx) ] e n ( d g ) l f ( g - l x )  - S(x)I ___ II,HI~/2. 

T h u s  I I fn - SII < ~ /2 ,  and we conclude t h a t  IlSn - frail M ~ whenever  n , m  > N .  

Since the fn ' s  are bounded left uniformly continuous functions, this means that  

the sequence fn converges uniformly to a bounded left uniformly continuous 

function f , .  On the other hand, fn converges to f in L~(G). Hence, f is left 

uniformly continuous as claimed. I 

Proof of Proposition 3.1: We remark that  for a given f E Co(/() the map 

G ~ g ~ gf  is continuous with respect to the sup norm on Co(/(). Since this 

norm majorizes the L~( / ( ,A ,  a) norm and the maps RO-n: L~(p) --+ L~(G) 

are contractions, Lemma A.1 implies that  for every n, RO-'~Of E L~(G) can 

be identified with a unique continuous function. Hence, we can define a linear 

functional ~ on C0(/() by setting })nf = (RO-nOf)(e). Clearly, II~nll _< 1. By 

the Riesz representation theorem there is then a unique finite measure pn o n / (  

such that  ~ f  = f pn(dx)f(x) for all f E Co(/(). Using the equivariance of R0 -n  

and �9 it is easy to see that  (RO-nOf)(g) = f p~(dx)f(gx) for all f E Co(~() and 

all g E G. Since for every f E C0(X), (RO-~Of}~=o E 7 /~  and all RO-~Of's 

are continuous, from the uniqueness of Pn we conclude that  # * pn+l = P~ for all 

n = 0, 1 , . . . .  Let ~: n~( / ( ,  ,4, ~) --+ L~(/(, ,A, (~)be the automorphism ~f  = fo0 .  

Since, R 0 - n - l o ~  = RO-nO, again by the uniqueness of pn we obtain 0pn+l = p~. 

We set p = Po. Then p , ( 0 - 1 p )  = P*Pl = P0 = P and (a) follows since ~ commutes 

with the G-action. 

To prove (b) consider the dual map (Rr LI(G) --+ LI(/(, .A, ~). As a direct 
$ 

consequence of ~) being an isomorphism we have that  �9 Q~ ,,~ c~, where v is 

a finite measure equivalent to A. On the other hand, Q~ = R*v. Hence, ~ 

(RO)*v. But if f E Co(/() then 

((RO)*u,f)= (v, R O f ) =  f  (da) /p(dx)s(ax) = p ) ( d x ) s ( x )  

So by the Riesz representation theorem (R47)*u = v , p ,  and thus a ,,~ v , p  ,,~ )~,p. 

Since 0~ ,,, c~, (b) follows. 
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Having established (b) we can define weakly* continuous equivariant contrac- 

tions R~: L~(X,A,(~) ~ L~(G) by setting (R~f)(g) = f(~-~p)(dx)f(gx). 
Clearly, R~f = RO-~Of whenever f E Co(X). But Co(X) is weakly* dense 

in L~(X, A, a) (an easy consequence of Lusin's theorem [20, Theorem 2.23]). 

Hence, (c) is true. Since ROll = 11 we also conclude that  p is a probability 

measure. 

(d) follows from Theorem 2.3 and the equalities IIQ~I]~ = ]]R*~I]~ = IIO*R*~I] 

= I I ( R r  = I I ~  * pl l -  
We now proceed to the proof of the convergence to point measure. Note first 

that for a given f C Co(X) the sequence 

/( w~-~p)(dx)f(x)=/(~-~p)(dx)f(w~x) 

is convergent for Q~-a.e. w = {w~}~=o c G ~ because {f(O-~p)(dx)f(.x)}~=o is 

a space-time harmonic function (Theorem 2.1). Weak.  convergence of a sequence 

{v~}~=l of probability measures is equivalent to convergence of the sequence 

f y,~(dx)f(x) for every f belonging to a dense subset of Co(X). But Co(X) is 

separable because X is second countable. Hence, 

~t ~ = {w E G~;  the sequence w~O-~p converges weakly. } C B (a) 

and Q~(G ~ - ~)  = O. Moreover, if w C ~ and p~ = lim~__.~ w~O-~p, then 

by Theorem 2.1 we have f p~(dx)f(x) = (Of)(w) Q~-a.e. for every f E Co(X). 
Since �9 is multiplicative, we can conclude that 

/ p~(dX)fl(x)f2(x) = ( /  p~(dX)fl(x)) ( /  p~(dx)f2(x)) 

Q~-a.e. for every pair f l ,  f2 E Co(X). Using again the separability of Co(X) we 

obtain that  

~ " = { w e ~ 2 ' ;  the functional Co(X)g f ~ /p~(dx)](x) is multiplicative} EB (a) 

and Q~(G ~-~2") = 0. Thus for w C ~ ' ,  p~ is either zero or a point measure. Let 

A = {w C ~";  p~ = 0}. By the separability of Co(X), A E B (a). We want to show 

that Q~(A) = 0. Let ~ C L~(#) be defined by d~/dQ, = XA where u is a finite 

measure equivalent to ~. Since for every f E Co(X), (Of)(w) = fp~(dx)f(x) 
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Q~-a.e., we obtain that  (/~, e l )  = 0 for all f �9 Co(X). Using the density of 

Co(X) in Loo(X, A, a) and the fact that  r is an isomorphism, we conclude that 

/~ = 0, i.e., that  Q~(A) = O. Thus QA(A) = 0 and the set 

f~ = {w �9 Goo; the sequence WhO--rip converges weakly, to a point measure} 

= ~2" - A 

has the properties asserted in Proposition 3.1. 

Define now ~: f/ ~ X by ~f~(~) = limn-~oo wnO-np = p~. It follows that  

for every f E Co(X), f o ~ is a B(a)-measurable function defined on ~. But 

from the basic properties of lcsc Hausdorff spaces we have that  for every open 

U C_ X there is a sequence fn E Co(X) converging pointwise to Xu. Hence, qo is 

a B(a)-measurable map of ~ into X. Let F be any B(a)-measurable extension of 

onto Goo. Consider the measure FQ~ on X. Let f E Co(X). Since (r  = 

f(F(w)) Q~-a.e., we obtain f (FQ~)(dx) f (x)  = f Q~(dw)f(F(w)) = (Q~, e l )  = 

(ep*Q~, f ) .  Hence, FQ~ = r ~ a and we can define a weakly, continuous 

�9 -homomorphism r Loo(X, ,4, a) ~ L~(#) by r  = f o F.  Clearly, r  = Cf  

for all f E Co(X). By the density of Co(X) in Loo(X,A,a),  r = r 

It remains to prove the last statement of the Proposition. Note that  f~2 = 

M f/1 is a Borel subset of the standard Borel space (GO~ B~176 Hence, by [1, 

Theorem 3.3.4], F(f~2) is an analytic set in X. If so, then by [1, Theorem 3.2.4] 

there are Borel sets X1, X2 C_ X such that X1 C_ F(~2)  C X2 and a ( X 2 -  X1) = 0. 

Our proof will be complete if we show that  a(X - X2) = 0. But this follows 

directly from the fact that r is injective. I 
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